

Jr. Thermal Engineer smacmaster@vertexaerospace.com

EDUCATION	
9/16 - 5/20	B.S. Mechanical Engineering
-,	University of Maryland, College Park
EXPERIENCE	
December 2020 – Present	 Tracking and Data Relay Satellite System (TDRSS) NASA Goddard Space Flight Center Support TDRS Weekly Sustaining Engineering Meetings and specifically contribute to load-
	shedding discussion in support of End of Mission (EOM) Planning
	 Maintain Thermal models for all generations of the satellite
	Correlated annual battery calibration to Thermal Desktop model using flight data
	 Integrated Boom Flex Harness standalone model into Gen II and Gen III spacecraft Thermal Desktop Models
	 Increased Fidelity of South Radiator, North Radiator, Nadir and Sac Models in the Gen II model with plans of updating Gen III as well
	 Used previous TDRS F8, F9 and F12 flight data to correlate the higher fidelity models
	 Performed a loadshedding analysis of the SSPAs and the MAF on F8 and F9 using the Thermal Desktop Model to calculate and compare power savings to the On-orbit test
	 Performed a loadshedding analysis of the MAR on F8 and F9 using the Thermal Desktop Model to calculate and compare power savings to the future
	on-orbit test
January 2021 – Present	Solar Wind and Pickup Ions (SWAPI) Princeton University
	Developed Reduced Thermal Desktop Geometric Math Model (GMM) and SINDA/FLUINT Thermal Math Model (TMM)
	Refreshed all analysis from PDR for CDR
	 Ran trades on the Ni Film Thickness and Alpha, the MLI e*, Optical properties, Etc.

Jr. Thermal Engineer smacmaster@vertexaerospace.com

- Responsible for providing thermal design and analysis for all electronics boards
- Performed post-processing analysis results in preparation for and supported CDR

November 2020 Tandem Reconnection And Cusp Electrodynamics

– Present

Reconnaissance Satellites (TRACERS)

University of Iowa

- Developed Reduced Thermal Desktop Geometric Math Model (GMM) and SINDA/FLUINT Thermal Math Model (TMM) for ACE and MEB
- Performed analysis trades to predict thermal response of isolating the ACE from the spacecraft
- Performed analysis trades to determine heater power requirements needed to stay within Survival Limits for ACE
- Responsible for providing thermal design and analysis for all electronics boards
 - Calculate case to board and junction to case interface conductance
 - Performed standalone board analysis as well as integrating the high-fidelity board into the instruments
- Integrate Instrument and Boom models into the Spacecraft model and run operational, nonoperational and stowed analysis
- Assisted in post-processing analysis results in preparation for and supported PDR

November 2020 Analyzer for Cusp Ions (ACI)

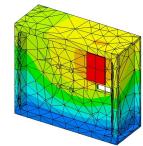
– Present

- Southwest Research Institute (SwRI)
 - Developed Reduced Thermal Desktop Geometric Math Model (GMM) and SINDA/FLUINT Thermal Math Model (TMM) for ACI
 - Performed analysis trades to predict thermal response of isolating the ACI from the spacecraft
 - Performed analysis trades to determine heater power requirements needed to stay within Survival Limits for ACI
 - Responsible for providing thermal design and analysis for all electronics boards

Jr. Thermal Engineer smacmaster@vertexaerospace.com

- Calculate case to board and junction to case interface conductance
- Performed standalone board analysis as well as integrating the high-fidelity board into the instruments

March 2022- TVAC Testing – Joint Polar Satellite System (JPSS-2)


May 2022 NASA Goddard Space Flight Center/Northrop Grumman

- Supported 12-week long TVAC test on and off in conjunction with Northrop Grumman's Thermal team
- Monitored and updated temperatures in order to keep track of GSE requirements and contribute in the consent to proceed
- Troubleshot adjustments that could be made if temperatures were approaching limits

LISA Laser

August 2020 – October 2021

- Design Interface
 - Developed Thermal Desktop and SINDA/FLUINT model of LISA laser from STEP files and component specifications
 - Performed worst case hot/cold thermal analysis and post-processed component temperatures
 - Created presentation package summarizing results and supported presentation to customer
 - Developed a reduced Thermal Desktop model that was correlated to the detailed model and
 - Updated Thermal Desktop Model Geometry and refreshed analysis when a new step file was delivered

July 2020 – Archinaut 1

August 2021 Made in Space

- Support engineering team in creating the Thermal Desktop and SINDA/FLUINT model(s) of the Archinaut Instrument
- Updated Thermal Desktop instrument model as mechanical and structural changes are received
- Post processed results and updated presentation package that was well received by the customer Assist preparing the Payload preliminary Thermal Design (PDR) presentation

Jr. Thermal Engineer smacmaster@vertexaerospace.com

May 2020 — September 2020	Polarimeter to Unify the Corona and Heliosphere (PUNCH) Southwest Research Institute	
2020	 Developed Thermal Desktop Geometric Math Model (GMM) and SINDA/FLUINT Thermal Math Model (TMM) for PUNCH instrument Central Electronics Box (CEB) Performed CEB worst case hot/cold thermal analysis comparing results against requirements Developed CEB preliminary thermal design using passive radiators and thermal isolators to regulate conductive paths 	
	 Performed trades to predict the thermal response of power left on Solar Arrays Updated Thermal Desktop satellite models as mechanical and structural changes are received Performed launch analysis to predict the thermal response of Initial Post Tip-off power Assisted in post-processing analysis results in preparation for the Engineering Peer Review (EPR) 	
June 2020 – September 2020	Dragonfly MOOG	
	 Developed Thermal Desktop and SINDA/FLUINT model of the MOOG Dragonfly rotor motor Supported engineering team in conducting operational worst case hot/cold steady state analysis and transient preheat analysis Calculated conductance through coupled components to predict temperature gradients for comparison against preliminary test results Performed analysis trades to predict thermal 	
	 response of adding insulation to motor components Performed analysis trades to determine warm up heater power requirements needed to reach operational temperatures Post processed results and updated presentation package that was well received by the customer Delivered Thermal Desktop models and analysis results to customer as outlined in SOW 	

•

• Proficient in Thermal Desktop and SINDA/FLUINT

Jr. Thermal Engineer smacmaster@vertexaerospace.com

- Proficient in Microsoft Office
- Proficient in Solidworks
- Proficient in Autodesk Inventor
- Proficient in CreoParametric
- Proficient in MATLAB data analysis and visualization
- Proficient in Ardiuno
- Supported TVAC Testing

OTHER WORK	•
Fall 2019	 Soft Pneumatic Robotic Fingers University of Maryland, College Park Developed multi-material finger-like structures, in Solidworks, that could deflect when pressure was driven through internal cavities Performed software simulations to gain theoretical results and refine design elements Tested the deflection to pressure ratio of several designs that were printed and processed using poly- jet additive manufacturing methods Worked in a team of 5 to write a journal manuscript discussing the field soft robotics and the experimental results of the fingers
Spring 2019	 3D Printed Prosthetic Foot <i>University of Maryland, College Park</i> Designed a prosthetic foot for an adult with an amputation, in Solidworks, using knowledge of anatomical, biomechanical and engineering principles Used Fused Filament Fabrication to 3D print a prototype foot that was subjected to loading tests associated with gait