

Steven T. Cole

Thermal Engineer scole@vertexaerospace.com

EDUCATION

12/2016 B.S. Mechanical Engineering

University of Maryland, Baltimore County

05/2021 M.S. Mechanical Engineering

University of Maryland, Baltimore County

EXPERIENCE

10/2020- Ocean Color Instrument (OCI)

Present NASA PACE Satellite

- Integration and Test (I&T) support to monitor component integration and conduct thermal hardware inspections
- Thermal hardware design and multilayer insulation (MLI) installation drawing creation
- Hardware tracking documenting and reporting
- Thermal and mechanical test and analysis support (thermal vacuum, venting analysis, vibration, thermal balance, contamination etc.)
- Compilation of comprehensive parts lists using information from Bills of Materials (BOMs), engineering drawings, online databases, and data from subcontractors and suppliers
- Evaluating completed designs with supervisor and other technical groups and making modifications necessary to achieve the most ideal design.
- Create testing procedures and WOA's for thermal vacuum at Goddard NASA facilities Building 5 and Building 7
- Lead and support dry TVAC tests and flight TVAC test at Goddard NASA facilities Building 5 and Building 7
- Present in design reviews for thermal team

Lead Thermal Engineer

HARP 2 PACE Satellite

- Thermal lead managing students, interns, and peers for HARP2, the Hyper-Angular Rainbow Polarimeter to be mounted on the NASA satellite PACE
- Thermal lead managing student interns for ORESat, a CubeSat for the University of Oregon with a cirrus flux camera as its payload
- Create testing procedures and control thermistor setpoints for thermal vacuum testing to qualify design at worst case hot, cold, and survival temperatures at Goddard NASA facilities

Steven T. Cole

Thermal Engineer scole@vertexaerospace.com

06/2018 – 10/2020

- Work closely with NASA thermal engineers to ensure the thermal models and thermal design follow NASA guidelines and standards
- Design, develop, test and document; Mechanical systems, electro-mechanical systems, thermal systems, and mechanisms of HARP 2 to ensure NASA Do No Harm Requirements are met, as well as internal camera science requirements
- Present thermal and mechanical systems overview for NASA's Design Reviews with minimal RFAs

SKILLS

- Proficient in Thermal Desktop and SINDA/FLUINT
- Proficient in Microsoft Office
- · Proficient in Solidworks, CREO, and Inventor
- Proficient in MATLAB data analysis and visualization
- Knowledge of ITOS, ANSYS, AWS, NASTRAN, and LabVIEW
- Certified in STK (System Tool Kit) and Amazon Web Services

OTHER WORK

Master's Thesis 05/2019-05/2021

Environmental Testing of Small Satellite Instruments

University of Maryland, Baltimore County

- Outline procedures and defined requirements to be satisfied for EMI/EMC, Vibration, Thermal Vacuum and Thermal Balance testing
- Lead and Co-Lead Engineer of contamination, hardware, thermal, and mechanical engineer throughout the lifetime of the HARP 2 Instrument
- In depth analysis using Inventor, ANSYS and Thermal desktop of designing a do no harm instrument for NASA and ways to replicate the process for similar small satellite instruments.
- Numerous thermal vacuum and vibration testing to outline and simulate acceptable and unacceptable data sets and environmental boundary conditions

Controls Engineer 05/2016 – 06/2018

- Leader of the technical team to perform and teach a wide array of operations regarding designing control automation systems with PID controllers, digital inputs/outputs, and analog inputs/outputs for mechanical efficiency
- Support the programming, testing, and commissioning of building automation system

Steven T. Cole

Thermal Engineer scole@vertexaerospace.com

- Review specifications of schematic drawings and suggested system improvements
- Support commissioning testing of all control hardware and software
- Worked with a team of multi-disciplined engineers using Agile & Scrum Methodology
- Designed and constructed physical casing for a custom-built tablet using Solidworks(CAD)
- Optimized design by creating multiple FEA (Mesh Finite Element Analysis) simulations in ANSYS to identify and minimize the stresses
- Performed statistical analysis on data at endpoints to ensure accuracy and reliability.
 - Further, tested with pseudo data using JAVA as proof of concept